

An Optical Turing Machine for Network Processing

Joe Touch USC/ISI Global Future Internet Summit 2012

9/4/2012 1 Information Sciences Institute

Copyright USC/ISI. All rights reserved.

OTM Overview

- Computation pace needs multibit optical
- Shared encoding suggests unification
- USC/ISI's OTM initiative
 - Revisits the assumptions of computation
 - Leverages native optical capabilities

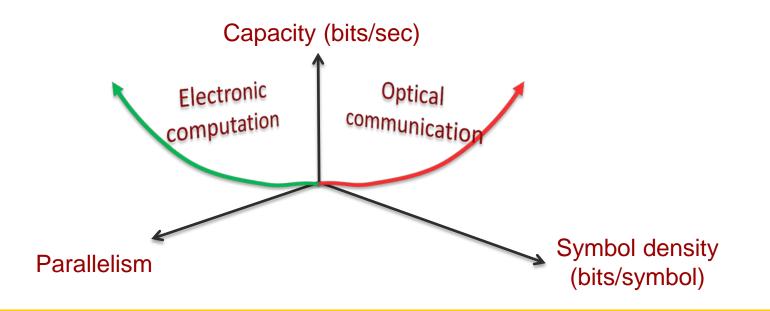
Current Optical Computing

- Analog signal processing
 - Spatial Fourier transforms (lens/lens-like)
 - Holography
 - RF-like wave manipulation
- Emerging digital approaches
 - Optical transistors
 (D. Miller, *Nature Photonics* 2010)
 - Quantum dots

What's missing?

- Analog processing limits
 - Implements static functions
 - Want Turing-complete reconfigurability
 - Limited composition
 - Want arbitrarily long sequences of functions
- Emerging digital approach limits
 - Optical transistor and quantum dots have low bandwidth
 - Still one bit per device

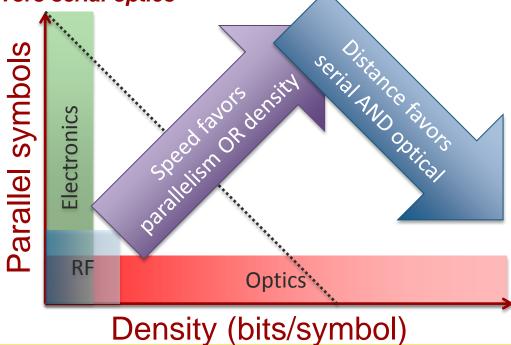
What is an Optical Turing Machine?


- A USC/ISI initiative to create:
 - A new approach to computing
 - Optical computing...
 - of high-density (multibit) symbols which natively support high-speed, long-distance transmission
 - A fundamental unification
 - Integrate computation and communication
 - from the communications viewpoint

Diverging approaches to high speed

- Computation increases parallelism
- Communication increases bit density

Copyright USC/ISI. All rights reserved.


9/4/2012 6 Information Sciences Institute

Multi-bit optical vs. electronic parallelism

• Speed favors serial optics or parallel electronics

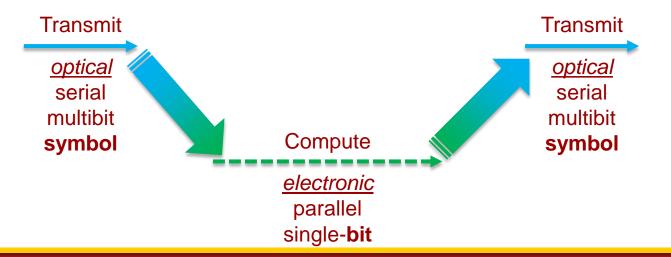
- High-speed electronics requires parallel low-density streams
- High-speed optics requires serial high-density streams
- Distance favors serial optics

Computation vs. Communication

• High-speed transmission

- Currently serial multibit optical encoding
- Parallel channels are too costly to synchronize
- High-speed computation
 - Currently parallel electronic binary encoding
 - Serial exceeds electronics
- Implication
 - Compute and transmit in different formats
 - Conversion is required ("OEO") and costly

Other Benefits of Optics


• 60x faster

- Optics: ~100 Gbaud * 4 bits/symbol (16 QAM)
 400 Gbps per link
 - = 400 Gbps per link
- Electronics: ~3.25 GHz * 2 bits/cycle (both edges)
 = 6.5 Gbps per link
- Supports similar integration
 - Concurrent streams using a single device (2 polarizations x 30 wavelengths)
 - 1/100 devices/chip but 60x streams per device
- Supports serial algorithms
 - Some functions can be simpler
 - 32-bit adder uses ~6 serial elements vs. >6,000 parallel

OEO vs. SBS

- Optical-electronic-optical (OEO)
 - Really symbol-bit-symbol (SBS) conversion
 - Convert from multibit symbols to on-off keying (OOK)
- Conversion is expensive
 - Power, complexity, performance

Back to Basics

Computation

- Use state to manage symbol (sequence) translation
- Communication
 - Exchanging symbols to manage (endpoint) state
- These are related
 - Both use state
 - Both "translate" symbols
- Hypothesis:
 - What if both could share one encoding?

OTM Goals

Avoid conversion

- Compute in long-distance transmission format

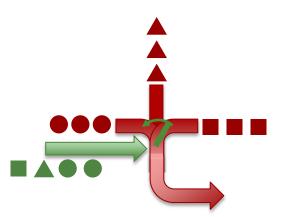
Transmit	Compute	Transmit
<u>optical</u> serial multibit symbol		

• Explore a new domain of computation

 Determine unique capabilities of native operations on transmission-format information

Native Multibit-symbol Support

- Explore formats, value mappings
 - Phase, power, frequency, polarization dimensions
 - Direct increment vs. "hopscotch" strides
- Explore alternate logics
 - Transformational (vs. gated) functions
 - Serial/temporal asynchronous functions
- Potential for multidimensional encoding
 - vs. multivalued 1D encodings
 - e.g., concentric QAM vs. spiral QAM



Functions

Gated functions

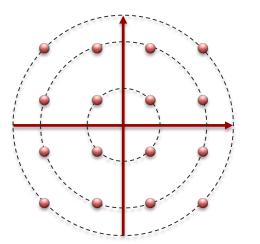
- Input selects other input(s) or constants (power rails)
- Requires constants, *i.e.*, symbol generation
- Requires clocking

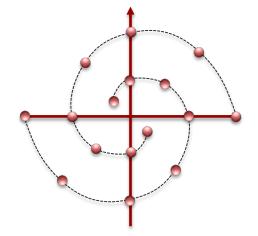
Transformational functions

- Change input signal(s) into output signal(s)
- Self-synchronizing

Copyright USC/ISI. All rights reserved.

9/4/2012 14 Information Sciences Institute




Current: Concentric QAM

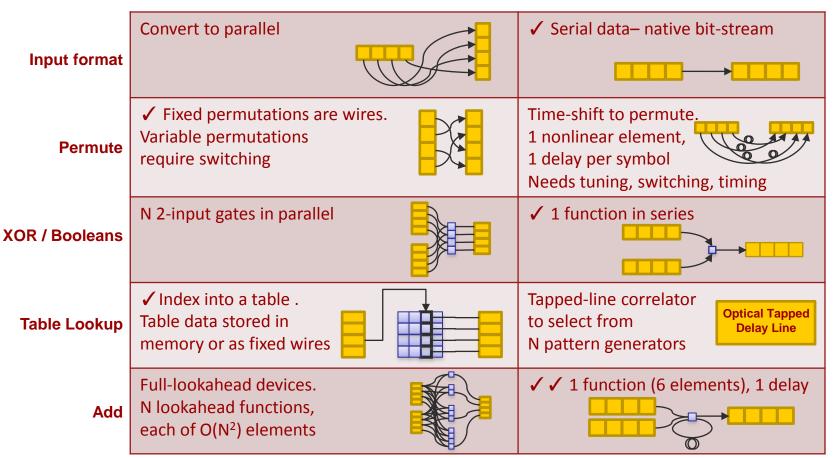
 Uniform minimum distance between valid values

OTM: Spiral QAM

 Value-independent transforms

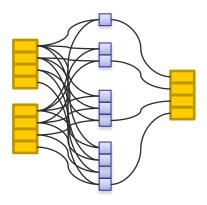
Copyright USC/ISI. All rights reserved.

9/4/2012 15 Information Sciences Institute

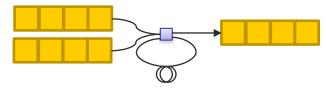

New Models of Computation

- Extend logic for multibit optical symbols
 - What is required a ring?
 - As in Boolean NAND or NOR, but with more than just binary values
 - *E.g.*, modulus integers under add/multiply
 - Non-ring functions vs. full λ -calculus
- Explore opportunities for Turing Machine variant
 - Minimal functions for completeness
 - Is computation possible with ephemeral I/O? (maximum look-forward/back within fixed ΔT)
 - Is computation possible with ephemeral state?

Exploring Functions: Electronics vs. Optics



Copyright USC/ISI. All rights reserved.


9/4/2012 17 Information Sciences Institute

Adder Complexity

Electronics

Optics

• Parallel look-ahead (electronic) adder

- Create, generate & propagate functions
 - $G_i = A_i B_i$
 - $P_i = A_i + B_i$
- Compute carries
 - $C_{i+1} = G_i + P_i C_i$
 - $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$
 - J^{th} element = OR of J groups of 1..J parts i.e., each element is $O(J^2)$
- Total complexity is O(N³) for N-bit width

• Serial (optical) adder

- Notation:
 - AND (adjacent), OR +, XOR ^
 - A, B = inputs; S = output
 - C = carry
- Generate sum, carry (optical adder)
 - $S_i = A_i \wedge B_i \wedge C_{i-1}$
 - $C_i = A_i B_i + (C_{i-1}(A_i \wedge B_i))$
- Total complexity is 6 (indep. of width)

USC Viterbi School of Engineering

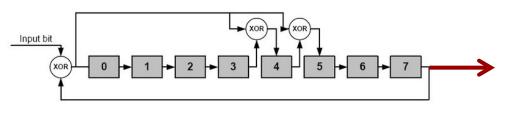
Copyright USC/ISI. All rights reserved.

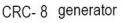
9/4/2012 18 Information Sciences Institute

Core Areas of Investigation

- Multivalue symbol transformations
 - Multibit logic/math (rings/groups – poss. beyond boolean)
 - Symbol transforms not gating
- Serialization
 - Serial logic/functions
 - Time-based (vs. space-based parallelism)
- Ephemeral state
 - Limited "lookback" (like USC/ISI Tetris router conveyor queues)

Potential Impact


- On-line processing
 - Data too large/high-capacity (or both) for off-line proc.
- Low-power
 - Processing without OEO/SBS conversion
- Examples:
 - Checksums / error coding and correction
 - Encryption and authentication
 - Packet filtering / virus scans
 - Transcoding
 - Data fusion (merging stream info.)
 - Data reduction (map/reduce)



Use Case: Packet Filtering

- Digital optical processing to detect/remove packets
 - Link errors destroy packets
 - Corrupt packets consume capacity all the way to the receiver
 - On-line checks can detect and remove corrupt packets
- Example: Ethernet Cyclic Redundancy Check (CRC)
 - CRC8 uses XOR, shift
 - Correlator checks result against CRC in packet
- Other examples:
 - Other checksums
 - Error correction codes
 - Authentication
 - Encryption

polynomial : $x^{8} + x^{5} + x^{4} + 1$

Potential Risks

• Large space of alternatives

- Symbol encodings
- Mapping/meaning (symbol:value)
- Logic/numeric functions
- Complex circuit constraints
 - Regenerative (level restoration)
 - Asynchronous
 - Transformational functions only no gated values
- State persistence
 - Non-traditional model of computation
 - May constrain utility to on-line network processing

Requirements

"Digital Transistor", Miller, *Nature Photonics* 2010

- 1. Cascadable
 - Stage N output drives stage N+1 input
- 2. Fan-Out
 - Output can drive at least 2 inputs
- 3. Logic-level restoration
 - Re-digitization
- 4. Input/output isolation
 - Immune to reflection
- 5. Absence of critical biasing
 - Robust to configuration variation
- 6. Logic level indep. of loss
 - Robust to signal weakness

ΟΤΜ

- 1. Digital (3) -> nonlinear
 - Requires re-digitization

2. Persistent -> multibit & serial

- Space-P. = transmittable
- Time-P. = storable
- 3. Asynchronous -> transformational
 - Functions transform inputs, not gate them

4. Turing-equivalent

- -> new math, alphabet, semantics
 - Recursive (opterationl induction) (1)
 - Time-Persistent
 - Group (two operations, etc.)
 - Conditionals
- 5. Robust? (4,5,6)
 - Stable under variation (vs. ECL?)

Copyright USC/ISI. All rights reserved.

9/4/2012 23 Information Sciences Institute

OTM Summary

- New approach to computation
 - Designed to native constraints of transmission
 - First-principles revision to new domain
- Symbol-based
 - Concurrent coding, function, and physical realization
- Collaborators:
 - Prof. Alan Willner, USC EE/Systems
 - Ph.D. students: Mortezza Ziyadi, Salman Khaleghi, Mohammed Reza Chitgarha

